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Abstract 

This paper deals with blast waves generated by a bursting spherical vessel filled with a pres- 
surized gas. A large number of numerical simulations are performed. From the results of the 
simulations, a simple model comparable to the TNT-equivalent model is derived. The new 
blast wave model consists of a single relationship between the scaled peak overpressure and 
the scaled distance. Moreover, a closed-form expression for the explosion efficiency as func- 
tion of the initial velocity only is provided. 
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1. Introduction 

In hazard analysis and risk evaluation it is necessary to estimate the possible effects 
of an explosion. Therefore it should be possible to predict the properties of the blast 
wave generated by an explosion. The explosions considered in this paper are due to 
the failure of a spherical vessel filled with a pressurized gas. The problem of burst- 
ing spheres is of particular interest. The explosion of a gas cloud can be simulated 
by the explosion of a bursting sphere. 

To calculate the peak overpressure of gas cloud explosions, simple models (e.g. 
the TNT-equivalent model) are still popular. These models, however, require the 
knowledge of the efficiency of explosion, and there is still much discussion about the 
determination of this parameter. On the other hand, in case of bursting spheres, 
numerical methods are available to calculate the flow field during explosion. For a 
number of initial conditions of the bursting sphere, the blast wave peak overpres- 
sure can be calculated. 
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Although these simulations are accurate, they require complex calculations. In this 
study the results of a large number of numerical calculations are used to develop a 
simple blast wave model, and to derive an expression to determine the explosion 
efficiency. 

2. Blast wave calculations 

2.1. Physical model 

Numerical blast wave calculations are based on the compressible, time-dependent, 
conservation equations for the mass density, momentum density and energy density. 
These equations, written in their Eulerian form and in one-dimensional spherical 
coordinates, are: 

apv i ar2pvv ap -=-_-_- 
at y2 ar ar ) 

af2 1 &%v 1 a&p --_-- 
at =- r2 ar r2 ar ’ 

(2) 

(3) 

where p is the density, v the fluid velocity, p the pressure and e the volumetric den- 
sity of the total energy. It is assumed that the energy transport by conduction and 
viscosity is negligible compared with convective energy transport. The total energy 
density e is defined as the sum of internal energy and kinetic energy: 

e = u + pv2/2. 

The equation of state for ideal gases is used: 

(4) 

(5) 

where R, is the universal gas constant, M the molecular mass and T the tempera- 
ture. Assuming caloric ideality, the internal energy can be written as a function of 
pressure: 

u = PAY - 1) (6) 

where y is the ratio of the specific heats. Mass, momentum and energy densities are 
treated as basic quantities (Eqs. (l)-(3)); p ressure and temperature as derived quan- 
tities. The pressure can be calculated from Eqs. (4) and (6), and the temperature 
from Eq. (5). 
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2.2. Numerical method 

The convective transport equations (l)-(3) are solved by the Flux-Corrected- 
Transport (FCT) algorithm. This is an explicit, non-linear, finite-difference method 
with fourth-order phase accuracy, developed by Boris and Book [l]. It is especially 
designed to maintain steep gradients and to ensure that all conserved quantities 
remain monotonic and positive. This algorithm has been used previously in a wide 
range of applications such as detonations [2] and turbulent reactive flows [3]. 

Simulations were conducted on a one-dimensional spherical grid with computa- 
tional cell spacing fixed at 0.01 m. The left side of the grid is treated as a solid wall 
boundary condition. At the right side the outflow boundary condition is applied. 
The time step is variable and related to the cell spacing by the Courant condition: 

At = E 
Ax 

max (v(i) + a(i)) (7) 

where the Courant number E is equal to 0.4, v(i) and a(i) are the local velocity and 
the speed of sound in numerical cell i, respectively. A typical value of At is 10 us. 

2.3. Initial conditions 

The problem of a bursting sphere is a spherical shock-diaphragm problem in which 
a gas at high pressure and temperature is separated from a gas at low pressure and 
temperature. In this study the low-pressure gas, which is the surrounding atmos- 
phere, is at constant pressure and temperature: po = 100.0 kPa, TO = 300 K. The 
pressure pi and the temperature Ti of the high-pressure gas range from 2.5 to 250 
times and 1 to 10 times that of the surrounding atmosphere, respectively. Both gases 
are assumed to be ideal with constant specific heats (ye = yi = 1.4). The radius of 
the spherical ‘vessel’ R1 is 1 m. 

3. Results 

3.1. Pressure as function of distance 

The pressure as function of distance at different times is shown in Figs. 1 and 2 
for a bursting sphere simulation with at initial pressure ratio (&PO) and tempera- 
ture ratio (Tt/To) of 10 and 1, respectively. 

In Fig. 1, the primary shock wave (Si) can be seen to start at about 250 kPa, 
which is one fourth of the initial pressure. At the same time, an expansion wave 
moves inward from the contact surface. The contact surface separates the gas ini- 
tially in the vessel from the surroundings, and is marked in the figures with a small 
square. After the expansion wave has reduced the inside pressure to less than 
100 kPa, a secondary shock wave (SZ) begins to move to the origin. At about 10 ms 
(Fig. 2) the secondary shock wave hits the origin (implosion) and reflects with a 
pressure of about 1000 kPa (not shown on the figure). The strength of both shock 
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Fig. 1. Pressure evolution at indicated times 
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Fig. 2. Pressure evolution at indicated times. 

waves decreases fast as they propagate into the environment, which is shown in 
Fig. 2. From this figure, it can be concluded that a bursting sphere with the given 
initial conditions causes two main shock waves to develop. The strength of the pri- 
mary shock wave is about two times that of the secondary shock wave. 

3.2. Pressure as function of time 

Figs. 3 and 4 show pressure as function of time at selected distances for the same 
simulation as in Section 2.1. In Fig. 3 pressure versus time is shown at two points 
inside the ‘vessel’. At these distances the pressure remains constant until the expan- 
sion wave arrives. The pressure then drops down to less than 1 kPa. At that moment 
the secondary shock wave moves inward and passes by accounting for the first steep 
pressure rise (label A in Fig. 3). The second steep pressure rise (label B in Fig. 3) is 
also due to the secondary shock wave, now moving outward after reflection at the 
origin. Finally the pressure at both points evolves to the ambient pressure. Fig. 4 
shows the more conventional pressure-time histories in which the main shock wave 
is followed by a negative phase. At the back of the negative phase the secondary 
shock wave appears. 
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Fig. 3. Pressure histories at selected distances. 
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Fig. 4. Pressure histories at selected distances 
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Fig. 5. Position of contact surface as function of time. 

3.3. Contact surface 

Fig. 5 shows the motion of the contact surface for four simulations. The initial 
pressure ratio is kept the same for the four simulations (pi = lop& but the initial 
temperature ratio differs as shown on the figure. 
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At the instant of the burst, the high-pressure gas expands rapidly, and the con- 
tact surface moves away fast. Because of the inertia and compressibility of air, the 
contact surface oscillates a few times before reaching a final position. It can be seen 
from Fig. 5 that this final position is almost independent of the initial temperature. 
The transient behaviour, on the other hand, depends strongly on initial tempera- 
tures. High initial temperature tends to cause a smaller overshoot and a higher ini- 
tial velocity of the contact surface. 

3.4. Expansion work 

The work done by the high-pressure gas on the surroundings is calculated from 
the difference of the total energy of the high-pressure gas: 

W = Et - Et0 

where Et is the total energy at time t and Et0 the initial total energy. The total energy 
is found from the volume integral of the total energy density: 

Et = I$‘” e&R2 dR 

where Rcs is the radius of the contact surface at time t. The initial total energy of 
the high-pressure gas can easily be calculated: 

For a given initial condition it is thus possible to calculate the expansion work as 
a function of time. This is shown in Fig. 6 for a simulation with p1 = 10~0 and 
ri = TO. Notice that the expansion work profile is analogous to the position his- 
tory of the contact surface. This is reasonable because for the environment the con- 
tact surface acts like a piston. 

The total expansion work Wt,, - this is the work that is finally performed by the 
gas on the surroundings - has been calculated for all numerical simulations. The 
results are shown in Fig. 7, and are compared with the isentropic expansion work 
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Fig. 6. Expansion work as function of time. 
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Fig. 7. Expansion work. Solid line: Eq. (1 l), circles: simulations. 
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Fig. 8. Scaled peak overpressure versus energy-scaled distance. 

(full line). The latter is defined as the work done by the gas during an isentropic 
expansion: 

KS = Pl vl- 
,,‘1 [l_(mJ-‘)‘ri] 

(11) 

From Fig. 7 it can be concluded that the total work done by the gas to the sur- 
roundings is equal to the isentropic expansion work: 

Wtot z wi,. (12) 

This is consistent with the physical model used here and which does not take into 
account any heat transport phenomenon. 

3.5. Scaled peak overpressure versus scaled distance 

The peak pressure ps (i.e. the maximum pressure of the primary shock wave) and 
distance R are non-dimensionalized using Sachs’s scaling relationships [4]: 

& = (Ps - POYPO, (13) 
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Fig. 9. Scaled peak overpressure versus energy-scaled distance. 
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(14) 

Note that the distance is scaled with the isentropic expansion work. 
In Figs. 8 and 9, the scaled peak overpressure is plotted against the scaled dis- 

tance. In Fig. 8, the initial pressure ratio is varied (Ti = To), while in Fig. 9 the ini- 
tial temperature ratio is varied (~1 = PO). The influence of the initial conditions is 
clear: increasing initial pressure or temperature results in higher scaled peak over- 
pressures. 

3.6. Explosion efJiciency 

The strength of the primary shock wave is related to the peak overpressure, and 
the latter is shown in Figs. 8 and 9. For different simulations, different curves are 
plotted. So the strength of the primary shock wave is not justly determined by the 
total work. The other determining factors are taken into account if there exists a 
single relationship between the scaled peak overpressure and the energy-scaled dis- 
tance. This relationship can be obtained by multiplying the isentropic expansion 
work in the expression for the energy-scaled distance (Eq. (14)) with a coefficient. 
This coefficient can be regarded as an efficiency of explosion: i.e. the fraction of the 
total work supplied to the surroundings which determines the strength of the pri- 
mary shock wave. Notice that for high initial pressures (Fig. 8), the corresponding 
curves start to coincide; for such cases, the explosion efficiency reaches unity. 

The factors that determine the strength of the primary shock wave can all be 
reduced into a single one: the motion of the contact surface. Indeed, the contact sur- 
face acts like a piston on the environment. It is especially the initial velocity of the 
contact surface that will determine the strength of the primary shock wave. Therefore 
the explosion efficiency is a function of the initial velocity of the contact surface: 

r = F(WS). (15) 
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Fig. 10. Initial temperature versus initial pressure for constant values of v,,/ao. 
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Fig. 11. Velocity of contact surface. Solid line: from one-dimensional shock tube problem, markers: 
simulations. 

The initial velocity of the contact surface depends on the initial conditions, and 
can be calculated from the contact surface history. However, since initially the flow 
field resulting from expansion is strictly one-dimensional, the expressions of the one- 
dimensional shock tube can be used. This implies that the velocity of the contact 
surface can be theoretically calculated [5]. Because this requires an iterative proce- 
dure, a two dimensional representation of the initial velocity of the contact surface 
as function of the initial conditions is given in Fig. 10. Fig. 11 shows, besides the 
initial velocity calculated from the shock tube problem, also the initial velocity cal- 
culated from the results of the numerical simulations presented above. The com- 
parison between these two velocities seems very good. 

The relationship 2 for the explosion efficiency can be derived from the results of 
the numerical simulations. The energy-scaled distance for each curve of Figs. 8 and 9 
is adjusted as described above so that they all coincide for at least one point. The 
resulting relationship 2 between the explosion efficiency and the initial velocity of 
the contact surface is shown in Fig. 12, and can be approximated by 

rl = f7 (WS) = 1 - ew (~1 W&O), (16) 
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Fig. 12. Explosion efficiency. Solid line: curve fit (Eq. (16)), markers: simulations. 
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Fig. 13. Scaled peak overpressure versus energy-scaled distance. Solid lines: simulations, dash-dot line: 
new blast wave model (Eq. (19)), dotted line: equation of Warren (Eq. (20)). 

where the coefficient cl is found from curve fitting: cl = - 1.35. This approxima- 
tion has a maximum absolute error of 0.18 and a maximum relative error of 110%. 

4. New blast wave model 

The new blast wave model for bursting spheres presented in this paper consists of 
a single relationship between the scaled peak overpressure and the energy-scaled dis- 
tance. This relationship is derived from Fig. 13, which shows the scaled peak over- 
pressure as function of distance scaled with the effective explosion energy: 

(17) 

The effective explosion energy is defined as the product of the explosion efficiency 
and the isentropic expansion work: 

Weff = rwis- (18) 
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The curves in Fig. 13 all lie within a small region, through which a straight line can 
be fitted. The result, shown in Fig. 13 as the dash-dot line, is the following expres- 
sion : 

0.695 ps=p. 
(R) 1.39 

(19) 

The dotted line in Fig. 13 presents the equation of Warren [6] (TNT-equivalent 
model). This equation gives the scaled peak overpressure as function of the scaled 
distance based on experimental data of TNT-explosions: 

lis = 
3.172 0.6 

2 

(&NT) 4'3 m4'3 
(20) 

where 

RTNT = R/ W$&- ’ (21) 

WTNT is the explosion energy expressed in kilograms TNT (1 kg TNT z 1000 kcal zz 
4180 kJ). Although the equation of Warren only holds for point source explosions, 
the agreement with Eq. (19) is good. 

Eq. (19) forms the main part of the new blast wave model. With this equation it 
is possible to calculate the scaled distance for a given peak overpressure. To calcu- 
late the real distance R, the effective explosion energy should be known. This can 
be calculated from Eq. (18) in which the isentropic expansion work is given by 
Eq. (11) and the the explosion efficiency by Eq. (16). 

The value of the new blast wave model can be illustrated with a simple applica- 
tion. Consider a spherical vessel with radius RI = 1 m containing air (yr = 1.4) at 
pr = 10~0 and at Tr = 5To. What is the peak overpressure of the primary shock 
wave at 5 m from the centre of the vessel after the vessel has burst? 

For the given initial conditions the isentropic expansion work is given by (11): 

Wi, = 5048 kJ. 

To calculate the effective explosion energy, which is given by Eq. (16), first the ini- 
tial velocity of the contact surface should be known. The latter can be found by 
interpolation from Fig. 10: 

vcs = 1.25 m/s and y = 82%. 

The effective explosion energy and the energy-scaled distance are given by 

We,= 4139 kJ and R = 1.45. 

The peak overpressure can be calculated from Eq. (19): 

ps - PO = 41 kPa. 

Thus a bursting sphere with the initial conditions as mentioned above, leads to an 
overpressure of about 40 kPa at a distance of 5 m. 
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5. Conclusions 

In this paper numerical simulations of bursting spheres are carried out to develop 
a new blast wave model. The calculations show that bursting spheres can lead to 
more than one shock wave. 

Further investigations of the results of the calculations, has lead to two impor- 
tant conclusions: 
(1) the explosion efficiency depends only upon the initial velocity of the contact sur- 
face, which can be theoretically calculated from the one-dimensional shock tube 
problem, and 
(2) the relationship between the scaled peak overpressure and the energy-scaled dis- 
tance is given by a single function. 

From these conclusions, a simple blast wave model can be derived, which 
allows one to estimate the peak overpressure of the primary blast wave caused 
by bursting spheres. The model consists of a single function between the scaled 
peak overpressure and the energy-scaled distance (Eq. (19)). The main achievement 
of the model here presented, is that a closed-form expression for the explosion 
efficiency is provided (Eq. (16)). In previous models, this parameter has to be 
estimated. 

6. Nomenclature 

a 

C 

“E 
A4 

P 
PS 
PS 
r, R 
RU 
R 
t 
T 
u 

V 

V 
W 

Y 
E 

4- 
P 

speed of sound, m/s 
constant number 
energy density, J/m3 
total energy, J 
molecular mass, kg/kmole 
pressure, Pa 
peak pressure, Pa 
scaled peak overpressure, dimensionless 
radius, m 
universal gas constant, kJ/kmole K 
scaled distance, dimensionless 
time, s 
temperature, K 
internal energy, J/m3 
fluid velocity, m/s 
volume, m3 
expansion work, J 
ratio of specific heats, dimensionless 
Courant number, dimensionless 
explosion efficiency, dimensionless 
mass density, kg/m3 
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Subscripts 

0 ambient condition 
1 initial condition (before burst) 
cs contact surface 
is isentropic 
t total 
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